
Quantitatively Evaluating the Validity of Contrastive
Generators for Recourse

Ian Howell1, Eleanor Quint1, Hongfeng Yu1,2
1School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA

2Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract—Explanations of classifiers can provide recourse to
those impacted, i.e., the ability to facilitate those impacted to
understand and potentially change the classification. Contrastive
explanations provide this recourse by producing an alternative
input close to the original such that the label is changed to the de-
sired, implying actions in the difference between the original and
contrastive inputs. However, quantitatively evaluating contrastive
explanations remains a challenging task. In particular, some
state-of-the-art contrastive explanation algorithms for decisions
made by deep neural networks can produce inputs that are out-
of-distribution or adversarial and are thus either infeasible for
a user to achieve or do not change the label according to the
underlying data distribution, respectively. Past work has termed
contrastive examples valid if they cross the decision boundary of
the classifier. However, this definition does not encompass these
failure modes and thus is not suitable to evaluate contrastive
methods when used for recourse. In this paper, we define a new
type of validity, called distributional validity, that checks for these
failure modes. We experiment with the distributional validity of
state-of-the-art contrastive explanation methods and find that
the best contrastive method depends on the architecture of the
classification model.

Index Terms—explainable AI, classification, recourse, con-
trastive explanation, validity

I. INTRODUCTION

Machine-learning based classifiers have demonstrated per-
formance on par with or close to humans in many settings
and are increasingly used to influence critical decisions in
diverse fields, such as medical diagnosis, aiding sentence rec-
ommendations, and so on [1], [2]. However, these algorithms
are often perceived as black-box systems due to their intricate
operations and structures, such as deep learning models with
numerous interconnected layers and parameters. Substantial
efforts have focused on enhancing the explainability of these
systems [3], thereby empowering users with recourse, i.e., the
ability to understand classification decisions better and make
necessary adjustments to achieve desirable results from classi-
fiers [4]. Among these endeavors, contrastive or counterfactual
explanations have proven effective in helping users understand
model behaviors and providing actionable recommendations
for recourse [5], [6]. In general, contrastive explanations
answer questions of the form “Why did the classifier label
X as P instead of as Q?” by providing an alternative input
X ′, called a contrastive example, that is close to the original
such that the classifier predicts Q instead of P [7].

While many contrastive explanation generation methods
have been developed, evaluating their resulting contrastive

examples is non-trivial, where evaluation metrics proposed by
researchers include validity, actionability, proximity, diversity,
and so on. In particular, among these metrics, quantitatively
evaluating the validity of contrastive explanations remains an
open problem [5], [8], which can be illustrated in Figure 1
where points B, C, D, E, and F are possible outputs of a
contrastive example algorithm for a given input point A.

First, a contrastive explanation generator may fail to move
the data across the model’s decision boundary and approx-
imately the boundary of the conditional, like points B and
E. Second, the generated data may fall outside the data
distribution, such as point C, which would mean that it is not
plausible for users to change their situation to that represented
by C. Third, the explanation method may produce alternatives
that fall within the data distribution, and thus are feasible for
users to move to, but on which the model and data distribution
disagree, such as point D. Finally, while point E is both in-
distribution and has crossed the boundary of the underlying
labeling function, it causes disagreement between the classifier
and the true labeling function, an undesirable behavior of
explanation as it relies on a failure of the model. Point F is the
only of those depicted that is feasible and crosses the decision
boundaries of both the model and the true labeling function.
Past work has called points C,D and F valid contrastive
examples [5], [8]; however, C and D give explanations that
do not match the underlying conditional distribution.

In this paper, we address the validity of contrastive expla-
nations by focusing on the cases where contrastive examples
lie outside the data distribution (point C) or cause classifier-
process disagreement (points D and E). These failure modes
are especially important to contrastive explanations because
some methods of contrastive generation rely on optimizing
the input with respect to a desired classifier output [9]–[11],
a technique that closely aligns with those used to perform
adversarial attacks, i.e. perturbations that change the classi-
fier’s predicted label while still looking like natural data [12]–
[15]. However, these failure modes are not considered by
previous work when determining whether contrastive examples
are valid [5], [8].

To tackle this issue, we note that these failure modes can
be approximately detected using out-of-distribution (OOD)
and adversarial detection methods, which we elaborate on in
Section III. Based on our observation, we propose to define
distributionally valid (DV) contrastive examples to fall within
the data distribution and cross the classification boundaries

Fig. 1. Examples of different possible results from generating contrastive
explanations. The green line encapsulates a data manifold p(X) > 0, with
the blue representing the boundary of the true labeling function f∗. Note,
the blue line only extends where the data has support, i.e., p(X) > 0. The
orange line divides the entire set X by the decision boundary of a model, fθ .
The contrastive question is ”Why is fθ(A) = 0 and not fθ(A) = 1?”, with
points B, C, D, E, and F being possible outputs of a contrastive example
algorithm. Points B,C,D, and E exhibit undesirable behavior. Point B is
close to the boundary of both the model and the underlying labeling function;
however, it does not actually cross either. Point C causes the model to output
fθ(C) = 1; however, it is out of the data distribution altogether. Points D
and E are both in-distribution; however, they cause disagreement between the
model fθ and the true labeling function f∗. Finally, Point F crosses decision
boundaries set by both the model and the underlying labeling function, making
it the best contrastive example of those discussed. While C and D are termed
valid in the existing work, they are not useful for recourse as moving from A
to either C or D will not change the label in the underlying labeling function.

defined by both the model and conditional distribution. We
use this definition to analyze contrastive generation methods
using OOD and adversarial detection methods to approximate
the proportion of constructed examples that are, in fact, DV.
The contributions of this paper include:

• Defining the DV property of contrastive examples and a
method that approximates their proportion in the outputs
of a contrastive method.

• Conducting experiments that demonstrate estimating the
proportion of samples that are DV with a family of OOD
and adversarial detectors, which we claim is necessary
for contrastive examples used for recourse but cannot be
adequately characterized using existing validity property.

Our findings show the superiority of DV over prior research in
quantitatively evaluating the validity of contrastive generators.
We utilize a range of DV detectors and demonstrate their
effectiveness in tackeling failure modes of contrastive exam-
ples that cannot be fully captured by existing solutions. Our
newly devised distributional validity opens more opportunities
for comprehending contrastive explanations across various
application domains.

II. BACKGROUND AND RELATED WORK

We review relevant methods to generate and evaluate con-
trastive examples, as well as methods of adversarial attacks,
and detecting OOD and adversarial data.

A. Contrastive Example Generation Methods

Contrastive or counterfactual example generators find
changes to input data to activate a different set of labels or
neurons. The change to the input should make minimal, but
perceptually sufficient, changes to the label-relevant semantics.
Adversarial attacks have the same objective, but remove the
“perceptually sufficient” requirement to try to avoid detection.

The activation maximization (AM) framework aims to find
inputs that produce specific results from a model [16]. Nguyen
et al. [17] propose to use a deep generative network to help
guide the optimization, as the generative network helps keep
data samples on the data manifold. Given a target class ytar,
the authors generate a latent code ẑ of the prototype with:

ẑ = argmax
z∈Rd

log p[ytar|Gϕ(z)]− λ||z||, (1)

where Gϕ is a deep generative network, and λ is a regulariza-
tion term on the latent code of the generator, z. To generate
data that exhibits predictions by the classifier closer to that
of predictions of data within the training distribution, Joshi
et al. [9] propose xGEMs, which uses the loss function with
which the classifier was trained. Further, they consider the
perceptual distance between the original input x0 and the
contrastive example Gϕ(z). This results in the optimization:

ẑ = argmin
z∈Rd

L(x0, Gϕ(z)) + λl(fθ(Gϕ(z)), ytar), (2)

where L is a distance in input space, and l is the original loss
function of the classifier. For the above methods, the prototype
and contrastive example are recovered by x̂ = Gϕ(ẑ). To
ensure that the boundary between the original class and the
target class is in focus, Feghahati et al. [10] propose CDeepEx,
which instead solves the constrained optimization problem:

ẑ = argmin
z

||z− z0||22

s.t. log p(y|Iz,z0)− log p(ytar|Iz,z0) = 0

log p(y|Iz,z0)− log p(y′|Iz,z0) ≥ ε

log p(ytar|Iz,z0)− log p(y′|Iz,z0) ≥ ε

∀y′ ̸= y, y′ ̸= ytar, (3)

where z0 is the latent code corresponding to the original image
via z0 = argminz ||Gϕ(z)− x0||2, Iz,z0

= Gϕ(z) +∆z0
, and

∆z0
= G(z0)− x0. However, as the classifier is trained such

that one class is selected to have a high probability over the
others, inputs that require equal log probabilities between two
classes may be prone to being out of the training distribution.
Poyiadzi et al. [6] address the feasibility and actionability of
contrastive examples by grounding their definitions in the den-
sity of the training distribution. They find contrastive samples
in training sets via pathfinding, sticking to high-probability
data. However, their method does not consider whether these
high-probability points are adversarial with respect to the
classifier. Our method explicitly includes these noted failure
cases in calculating DV contrastive examples.

B. Evaluating Contrastive Examples

Mothilal et al. [8] test the target class validity (TCV) of
a contrastive example, i.e., whether the classifier predicts the
label of the example to be the target class. This method clas-
sifies points C and D in Figure 1 as being valid, even though
they do not cross the boundary of the conditional or even
fall outside the data distribution. Looveren et al. [11] define
an interpretable contrastive example as one that lies close to
the model’s training distribution and introduce two metrics.
The first, IM1, approximates whether an example is closer to
the distribution of data with the contrastive label or to the
distribution of data with the original label. The second, IM2,
approximates if a contrastive example is described equally
well by the distribution of the contrastive class and the entire
data distribution, signaling a more interpretable example. Both
of these methods work toward determining if a contrastive
example lies within the same distribution as training data
with the contrastive label. While these approaches are able to
measure certain aspects of contrastive explanations, they do
not account for adversarial perturbations that can arise from
contrastive optimization, like points D and E in Figure 1.

Laugel et al. [18] introduce methods to calculate the prox-
imity, connectedness, and stability (or robustness) of con-
trastive explanations. The most similar metric to our own is the
stability of a contrastive example, where a contrastive example
is stable if data that is close to it exhibit similar explanations.
However, this is complementary to our method, as a contrastive
example may be stably adversarial.

C. Adversarial Attacks

Adversarial attacks apply imperceptible perturbations to
data that cause the prediction output by a model to disagree
with a conditional distribution [15]. Many works keep pertur-
bations imperceptible by minimizing perturbation magnitudes,
e.g., in terms of a pixel-norm [13], [14], [19] or Just Noticeable
Differences in image space [20]. The Fast Gradient Sign
method (FGSM) [19] takes a single step on the loss gradient
of the classifier that maximizes the loss of a network fθ,
bounding the L∞ norm of the change by a small ϵ:

x̂ = x+ ϵsign(∇xJ(θ,x, y)), (4)

where J(·) is the loss function used to train the classifier. The
Basic Iterative Method (BIM) [21] extends this idea by taking
multiple, smaller optimization steps on the same gradient.
These methods may be used to target a specific class y′ by
using the targeted class in the loss function. The Carlini
& Wagner L2 (CWL2) approach [14] is a more powerful
technique that minimizes:

ŵ = argmin
w

||
1

2
(tanh(w) + 1)− x0||22

+ c · f

(
1

2
(tanh(w) + 1)

)
, (5)

where f(x) = max(max{Z(x)i : i ̸= t} − Z(x)t,−κ), Z
is the logits of the classifier, t is the target label, and the

adversarial example x̂ is recovered by x̂ = 1/2·(tanh(ŵ)+1).
Given κ = 0, a default provided by the authors, the logits of
the target and original classes are pushed to be equal in the
optimization. In our work, we train adversarial detectors to
recognize these three attacks to help us determine whether
contrastive examples are adversarial.

D. Adversarial Detection

Many methods have been designed to deal with the above
adversarial attacks, either training the model using adversarial
augmentation [22] or by detecting adversarial examples post-
hoc, i.e., after model training. Techniques that fall into the
latter category are of particular interest to this work, as they
function with any model that provides a gradient and do not
require retraining the classifier, which incurs additional cost.
Feinman et al. [23] propose to estimate the density of the
training distribution’s representation in the last hidden layer
of a convolutional neural network. This estimate is then used
to determine what inputs lie far from the data manifold. Ma
et al. [24] propose the local intrinsic dimensionality (LID)
metric to estimate the input distance distribution, which differs
for adversarial examples that lie close to but not on the
data manifold. Lee et al. [25] calculate the Mahalanobis
distance of activations at each block of a network from those
collected from the training set. The authors then train a logistic
regression model that is able to detect adversarial examples.
They also show that their method can accurately detect OOD
samples. In our work, we train LID and Mahalanobis-based
detectors to detect adversarial contrastive examples.

E. Out of Distribution Detection

Liang et al. [26] propose Out-of-DIstribution detector for
Neural networks (ODIN), a multistep OOD detector. ODIN
augments the input by taking an optimization step to minimize
the loss of the classifier with respect to the predicted class
of the classifier. It then calculates a maximum, temperature-
scaled softmax value of the classifier. A logistic regression
model is learned on this softmax score to detect OOD samples.
Ren et al. [27] propose to measure the log likelihood ratio
(LLR) between a standard density model and a background
density model that has been trained on corrupted data. If the
difference in likelihood is low, then the background statistics
play a large role in the likelihood and therefore the example
is labeled as out-of-distribution. Additionally, as mentioned
above, the Mahalanobis-based detection method of Lee et
al. [25] works well in detecting OOD samples. Our method
uses these techniques to determine OOD contrastive examples.

III. METHODS

In this section, we derive and define distributionally valid
contrastive examples and how to automatically detect con-
trastive examples that exhibit this property.

Let p(X, Y) be the joint distribution of the data with a true
labeling function f∗ that corresponds to the point distribution
p(Y |X). Let (x, y) ∼ p(X, Y) be an input with its associated
label, such that the classifier fθ(x) agrees with the true

classifier f∗(x), i.e., fθ(x) = f∗(x), an assumption made for
the setting of recourse rather than model debugging. Suppose
a user wishes to understand why x was not classified as
another label, y′. They apply a contrastive explanation method
h to generate the example using fθ as an approximation of
f∗, x′ = h(x, y′). Previous work defines x′ to be a valid
contrastive example if fθ(x

′) = y′ [5], [8]. This definition
considers only the classification boundary learned by the
classifier fθ and not the data manifold p(X), shown by the
green line in Figure 1, nor the disagreement between fθ and
f∗, exemplified by points D and E.

To better account for the data manifold and conditional
data distribution, we define a distributionally valid (DV)
contrastive example to be a valid contrastive example such
that the true labeling function f∗ agrees with the classifier for
the contrastive label, i.e., f∗(x′) = fθ(x

′):

DV (x′, y′) = 1(fθ(x
′) = y′ ∧ f∗(x′) = fθ(x

′)). (6)

While fθ(x
′) = y′ is easily testable, it is intractable to

determine the agreement of the classifier with the true labeling
function. To address this challenge, we partition model errors
based on whether data has a true label, i.e., whether the
marginal p(X) has support. In the case that it does not,
i.e., p(X) = 0, then x is out-of-distribution like point C, a
case that can be approximately detected by various methods
discussed in Section II-E. In the case that p(X) > 0, then
the classifier has simply misclassified the data, like points D
and E. We argue that for a well-trained classifier, this data
can be approximately detected using an adversarial detector
as the data must be close to in-distribution data in the input
space. This is supported by empirical evidence that adversarial
detectors trained to detect one type of attack are in-fact good
detectors of other attacks, i.e., other data near the boundary
that the classifier misclassified ([25], Section IV-B).

Therefore, we approximate agreement between the true la-
beling function f∗ and the classifier fθ using the combination
of an OOD detector, pϕ(x) > 0, and an adversarial detector
Advψ(x) that returns 1 if x is adversarial with respect to fθ
and 0 otherwise:

DV (x′, y′) ≈1(fθ(x′)

=y′ ∧ pϕ(x
′) > 0 ∧Advψ(x

′) = 0). (7)

Finally, for a dataset D ∼ p(X), we define the distributional
validity of the contrastive generator h to be the proportion of
generated examples that are DV:

DV (h) =

∑
x∈D

∑
y∈Y s.t.y ̸=f∗(x) DV (h(x, y′), y′; θ)

|D|(|Y | − 1)
. (8)

IV. EXPERIMENTAL RESULTS

We have conducted detailed experiments to systematically
evaluate the distributional validity developed in our approach.
Our experiments incorporate different architectures, hyper-
parameters, and training configurations (Section IV-A). We
first assess and select suitable OOD and adversarial detectors
according to their abilities to differentiate in-distribution data

from OOD or adversarial data, and the selected detectors
allow us to meaningfully approximate the DV of contrastive
examples (Section IV-B). We also evaluate the ability of these
detectors to detect out-of-distribution and adversarial data
(Section IV-C). Finally, we use the best-performing detection
methods we found to evaluate the validity of contrastive
example generators with the existing validity metrics and our
devised DV and compare the effectiveness of these metrics
(Section IV-D).

A. Architectures, Hyperparameters, and Training

1) Contrastive Example Generation Methods: In these ex-
periments, we evaluate contrastive examples generated by
Activation Maximization (AM), xGEMs, and CDeepEx. To
generate contrastive examples using the AM approach of
Nguyen et al. [17], we modify Equation 1 to penalize the
change in the latent space variable z0 using an L2 norm:

ẑ = argmax
z

log p[wy′ |Gϕ(z)]− λ||z− z0||2, (9)

where Gϕ is a generative model, z0 = argminz ||Gϕ(z)−x0||,
and x0 is the original image.

2) Generative Networks: Each of these contrastive methods
requires a generative model Gϕ to reparameterize the input
space. In this work, we test both a variational auto-encoder
(VAE) and a generative adversarial network (GAN) as this
generative network.

Each VAE used in this paper uses an encoder and decode
of the following architectures. Each VAE encoder consists of
4 Conv2D layers with kernel size 3 and stride 1. The Conv
layers output tensors with 16, 32, 64, and 128 channels. The
last layer in the encoder is a linear layer that compresses the
data into a 400-dimensional latent representation. The decoder
of each VAE consists of a linear layer followed by 4 Conv2D
layers. The linear layer goes from 400 to 28×28×128, which
is then unflattened to a tensor of width and height of 28 with
128 channels. The following encoders each have a kernel size
of 3 with a stride of 1 and output 64, 32, 16, and 1 channels,
respectively. Each layer uses ‘same’ padding to maintain the
width and height. VAEs are trained using the Adam optimizer
with weight decay 1e-4 and early stopping.

The generative adversarial networks used in this work are
Wasserstein GANs with Gradient Penalty [28]. The WGAN
generator has a latent dimension of 128 and consists of an
initial ReLU-activated linear layer that is unflattened to a
shape with a height and width of 4 and 256 channels. The
rest of the network consists of 3 ConvTranspose2D that halve
the number of channels in each layer while increasing the
spatial dimension to 7 × 7, 14 × 14, and finally 28 × 28
with the last layer also reducing the number of channels to
1. Each of these layers has a kernel size of 4. The first two
are ReLU activated, while the last is sigmoid activated. The
discriminator consists of 3 sets of Conv2D with kernel size
5, output channels 64, 128, 256, strides 2, 2, 1, and padding 1
activated with LeakyReLU with slope 0.2. Each detector is
trained using separate Adam Optimizers with a learning rate
of 1e-4, β1 = 0, and β2 = 0.9. Training takes 400 epochs.

Fig. 2. Accuracy of each detection pairing on the in-distribution dataset (MNIST), OOD datasets (FMNIST, KMNIST, and Gray-CIFAR10), and adversarial
datasets (FGSM, BIM, and CWL2). Each bar represents a pair of OOD and adversarial detectors, labeled as OOD Detector/Adversarial detector Adversarial
training set. The top row provides the accuracy for each detector on the Small classifier while the bottom row provides the accuracy on the ResNet18 classifer.

3) Datasets: We conduct our experiments using MNIST, a
dataset of handwritten digits, and two classification architec-
tures from the literature. We closely follow Lee et al. [25] to
create our training, validation, and test datasets. The training
set of MNIST is used to train classifiers. We split the test set
of MNIST into three partitions, with the first two partitions
each containing 10% of the data and the last containing the
other 80%. The first and second partitions are used for training
(including validation) of the adversarial and OOD detectors,
respectively. For the adversarial training set, we generate ad-
versarial examples using each of the FGSM, BIM, and CWL2
methods. We additionally construct adversarial examples for
the third partition to be used in testing the detectors. Only use
data corresponding to successful adversarial attacks in both
training and testing. For the OOD training set, we designate
10% of the partition to be used for training the detectors
and 90% to be used for validation of the testers. Finally, we
generate contrastive examples using the third partition.

4) Classifiers: The first architecture we use is similar to
that used in LeCun et al. [29], consisting of two sets of
Conv/MaxPool/ReLU, using a kernel size of 5×5 in the
convolution, followed by two dense layers with the input
resized to 64×64. We term this the Small architecture, as it is
a basic architecture used to show how our method works. The
second is a ResNet18 architecture [30] and is used to show
how our method performs when the architecture scales.

We note that our experiments do not rely on any specific
architecture, and others may be used as long as they function
with contrastive generation and out-of-distribution and adver-
sarial detection methods.

B. Joint Detection of OOD and Adversarial Examples

Well-functioning OOD and adversarial detectors are re-
quired to meaningfully approximate the DV of contrastive
examples. As shown in Equation 7, it is possible for false
negatives detected by the OOD or adversarial detector to

be corrected by the other, but a false positive cannot be
corrected. Due to this interaction in the performance of the
overall detector, this first experiment evaluates the ability of
a joint OOD and adversarial detection method to differentiate
in-distribution data from that which is OOD or adversarial.

For this experiment, a classifier of each aforementioned
architecture is trained on the MNIST dataset. Each of
the ODIN [26], Mahalanobis [25], and Likelihood Ratio
(LLR) [27] OOD detection models are trained for each clas-
sifier using the Fashion-MNIST (FMNIST) dataset as the
OOD dataset. Local Intrinsic Dimensionality (LID) [24] and
Mahalanobis adversarial detectors are trained on adversarial
datasets constructed from FGSM, BIM, and CWL2 attacks
applied to each classifier for a subset of the MNIST test set.
We note that using these specific detection methods for both
OOD and adversarial examples is not necessary, but they are
instead selected to show the effects of various state-of-the-art
techniques in our framework.

Both the adversarial and OOD Mahalanobis detectors were
trained using noise magnitudes of 0, 0.0005, 0.001, 0.0014,
0.002, 0.0028, 0.005, and 0.01, using the best performance
on the validation set. After the initial evaluation, we found
that a temperature of 1000 was useful for the ODIN method
and selected the best detector trained from noise magnitudes
of 0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.02,
and 0.05, using the best performing on the validation set. The
LLR detector uses two VAE classifiers as described above. We
have tested corruption magnitudes of 0.1, 0.2, 0.3, 0.4, and 0.5,
finding that the most accurate detector came from using 0.3.
We have trained LID detectors with k equal to 10, 20, 30, . . .,
90 and used the best performing one on the validation set.

Each joint detection method is evaluated on a separate test
set of the training dataset (MNIST), the trained OOD dataset
(FMNIST), and additional OOD datasets Kuzushiji-MNIST
(KMNIST) and Gray-CIFAR10 that are used to test generality.
Each joint detector is further evaluated on the test set of the

TABLE I
ACCURACY OF OUT-OF-DISTRIBUTION DETECTION METHODS (TOP-HALF) AND ADVERSARIAL DETECTION METHODS (BOTTOM-HALF) ON THE MNIST

TEST SET, OUT-OF-DISTRIBUTION TEST SETS, AND ADVERSARIAL TEST SETS. EACH OOD METHOD WAS TRAINED USING MNIST AS THE
IN-DISTRIBUTION DATASET AND FMNIST AS THE OUT-OF-DISTRIBUTION DATASET. EACH ADVERSARIAL DETECTION METHOD WAS TRAINED USING

THE ADVERSARIAL DATASET INDICATED IN THE Adv Method COLUMN.

Classifier Detector Adv Method MNIST FMNIST G-CIFAR10 FGSM BIM CWL2
Small ODIN - 0.9597 0.9660 0.9999 0.2013 0.1624 0.3958
Small Mahalanobis - 0.9830 0.9754 1.0000 0.9972 0.8720 0.1451
Small LLR - 0.9566 0.9394 0.9988 0.1996 0.0940 0.0382
ResNet18 ODIN - 0.9353 0.9934 0.9999 0.9504 0.6127 0.9699
ResNet18 Mahalanobis - 1.0000 0.9760 1.0000 1.0000 0.9991 0.7609
ResNet18 LLR - 0.9566 0.9394 0.9988 0.2811 0.0600 0.0413
Small LID FGSM 0.6296 0.8591 0.9964 0.8513 0.7441 0.4503
Small Mahalanobis FGSM 0.9998 0.6711 0.9677 0.9947 0.9841 0.0009
Small LID BIM 0.6265 0.8484 0.9966 0.8519 0.7605 0.4295
Small Mahalanobis BIM 0.9998 0.8236 0.9969 0.9988 0.9939 0.0009
Small LID CWL2 0.7981 0.8176 0.9895 0.5089 0.4114 0.2316
Small Mahalanobis CWL2 0.9201 1.0000 0.9999 1.0000 1.0000 0.4440
ResNet18 LID FGSM 0.9832 0.9924 1.0000 1.0000 0.9991 0.8981
ResNet18 Mahalanobis FGSM 0.9999 0.8091 1.0000 0.9974 0.9872 0.5373
ResNet18 LID BIM 0.9932 0.9052 0.9644 0.4940 0.9741 0.8475
ResNet18 Mahalanobis BIM 0.9999 0.9761 1.0000 1.0000 0.9997 0.8294
ResNet18 LID CWL2 0.8714 0.9970 1.0000 0.9947 0.9997 0.9774
ResNet18 Mahalanobis CWL2 0.9989 0.9768 1.0000 1.0000 1.0000 0.9907

adversarial samples they were trained on as well as the test
sets of the other two unseen attacks.

Figure 2 shows the results. For the Small classifier, the
ODIN OOD detector and the Mahalanobis adversarial detector
trained on the CWL2 attack, which we will refer to as the
ODIN/Mahalanobis CWL2 detector, perform the best across
the test sets. The detector classifies CWL2 attacks the best
(76.0%) while maintaining high accuracy on the other test sets
due to the ODIN OOD detector making up for shortcomings
in the Mahalanobis detector trained on this classifier. Of the
results that do not use the ODIN OOD detector, the Ma-
halanobis/Mahalanobis CWL2 and LLR/Mahalanobis CWL2
methods produce the best results, detecting 44.6% and 45.9%
of CWL2 examples while achieving high accuracy on the in
distribution and OOD test sets. It should also be noted that
methods using LID adversarial detection trained on FGSM and
BIM perform poorly at labeling MNIST data as in-distribution,
leading to degraded performance.

For the ResNet18 classifier, many methods perform better at
detecting in-distribution data and adversarial examples than for
the Small model. In particular, the Mahalanobis/Mahalanobis
CWL2 method performs best with high 90%-results on both
the in-distribution and CWL2 test sets.

C. Out-of-Distribution and Adversarial Detector Individual
Evaluation

In this experiment, we evaluate the ability of adversarial and
out-of-distribution detectors to detect out-of-distribution and
adversarial data, respectively, i.e., do the task the other type
of detector was built to do. We train classifiers and detection
methods as in Section IV-B. We evaluate each individual
detection method on the in-distribution dataset MNIST, OOD
datasets FMNIST and Gray CIFAR10, and adversarial datasets
built with FGSM, BIM, and CWL2.

We present the accuracy of each detector in Table I. For
the Small classifier, the ODIN OOD method is able to detect
CWL2 attacks with accuracy on par of the other adversarial
techniques. However, it is unable to distinguish the FGSM and
BIM attacks well. On the other hand, the Mahalanobis OOD
detection method is unable to distinguish CWL2 attacks well,
but is able to pick up on FGSM and BIM attacks. We see this
trend continue in the case of the ResNet18 classifier; however,
the ODIN method is better able to detect FGSM attacks.
The Likelihood Ratio method is unable to detect adversarial
attacks well for either classifier, most likely due to having
no dependence on the classifier in question. In most cases, the
adversarial detectors were able to detect OOD examples much
better than the OOD detectors were able to detect adversarial
examples. In particular, the methods trained on CWL2 attacks
had the best generalization.

D. Evaluating the Validity of Contrastive Example Generators

Using the best-performing detection methods found above,
we now evaluate how well contrastive methods are able to
generate DV examples. We compare the activation maximiza-
tion (AM) method on the latent space, given by Equation 9,
with xGEMs and CDeepEx, using VAE and GAN generators
for the input reparameterization in each method. For each of
these methods, we generate a contrastive dataset composed of
inputs generated by the contrastive method for each label not
equal to the label of the original image.

For each contrastive dataset, we test the target-class va-
lidity (TCV), in-distribution (ID) proportion, non-adversarial
(NADV) proportion, and our devised DV proportion. We
present the results with respect to the LLR/Mahalanobis
CWL2 and ODIN/Mahalanobis CWL2 methods, due to their
results in the previous section, in Table II.x

As shown in Table II, with respect to the LLR/Mahalanobis
CWL2 detector and the Small network, the CDeepEx method

TABLE II
PERFORMANCE OF EACH CONTRASTIVE GENERATION METHOD WITH RESPECT TO THE LLR/MAHALANOBIS CWL2 AND ODIN/MAHALANOBIS CWL2

DETECTORS. THE METRICS DISPLAYED ARE: TARGET CLASS VALIDITY (TCV), IN-DISTRIBUTION (ID) PROPORTION, NON-ADVERSARIAL (NADV)
PROPORTION, AND DISTRIBUTIONALLY VALID (DV) PROPORTION.

LLR/Mah CWL2 ODIN/Mah CWL2
Method TCV ID NADV DV ID NADV DV

Sm
al

l

AM VAE 1.0000 0.1456 0.0344 0.0233 1.0000 0.0344 0.0344
AM GAN 0.9700 0.6944 0.0167 0.0067 0.9989 0.0167 0.0067
xGEMs VAE 1.0000 0.9667 0.2022 0.1978 0.1056 0.2022 0.0278
xGEMs GAN 1.0000 0.9044 0.7311 0.6700 0.1900 0.7311 0.1567
CDeepEx VAE 0.9956 0.9722 0.2522 0.2500 0.0622 0.2522 0.0267
CDeepEx GAN 0.9933 0.9011 0.7511 0.6889 0.0878 0.7511 0.0656

R
es

N
et

18

AM VAE 0.9067 0.4189 0.1156 0.0678 0.9911 0.1156 0.0722
AM GAN 0.7533 0.7400 0.2967 0.1567 0.9633 0.2967 0.1633
xGEMs VAE 0.9600 0.9622 0.7544 0.7122 0.0244 0.7544 0.0167
xGEMs GAN 0.9511 0.8833 0.9256 0.7822 0.0311 0.9256 0.0300
CDeepEx VAE 0.5533 0.9367 0.7989 0.4222 0.2444 0.7989 0.1522
CDeepEx GAN 0.3811 0.9067 0.9367 0.3200 0.0567 0.9367 0.0278

Fig. 3. Samples judged to be either OOD (left), adversarial (middle), or distributionally valid (right) by the LLR/Mahalanobis CWL2 detection method.
Contrastive examples were generated using the xGEMs method with a VAE generator for the ResNet18 classifier. Each panel contains a set of the original
images in the top half of the panel and a set of the corresponding contrastive examples in the bottom half. The contrastive labels assigned by the classifier
in the adversarial (middle) panel from left to right are 6, 8, 0, 0, 6. The contrastive labels assigned by the classifier for the DV (right) samples from left to
right are 9, 1, 5, 6, 9.

using a GAN generative network gave the best Valid and
Non-Adversarial proportions, while for the ResNet18 network,
xGEMs using a GAN generative network gave the best DV
score. CDeepEx has a significantly lower DV score for the
ResNet18 model due to low target-class validity. This comes
from the optimization objective of CDeepEx, which tries to
find the classifier’s decision boundary between the original and
target classes. Additionally, for both classifiers, both generative
networks, and detection methods, the AM method performed
worse than both xGEMs and CDeepEx. We speculate that
this comes from optimizing the log p(wy′ |Gϕ(z)) term of
Equation 9 without regard for the other classifier logits. This
results in OOD and adversarial examples that are additionally
stable, but not necessarily minimal.

The results using ODIN as the OOD detector do not tell the
same story as that described above. ODIN uses a preprocessing
step that pushes the data along the error gradient given the
class predicted by the classifier, which can help distinguish
OOD data from in-distribution data. However, this preprocess-
ing step assumes that data is locally stable, i.e., data in close
proximity produce similar classifications, which is not the case
for contrastive examples that lie near the decision boundary of
a classifier. Therefore, the ODIN/Mahalanobis CWL2 method
artificially boosts the reported proportion of in-distribution
contrastive examples output by the AM method, because the
AM method produces very stable, if incorrect, classifications
by optimizing specific logits output by the classifier. It also
artificially lowers the reported proportion of in-distribution

contrastive examples output by the xGEMs and CDeepEx
methods, as these methods provide contrastive examples that
are closer to the decision boundary of the classifier.

We can also observe slight fluctuations in TCV values across
the settings of the Small network, which occurs despite the
non-negligible variations of the OOD and adversaial examples.
Similarly, the TCV scores related to ResNet18 do not entirely
align with the distribution of OOD and adversaial examples
produced by these contrastive example generation methods.

In addition to the above quantitative results, we provide
sample contrastive examples generated by xGEMs with a VAE
applied to the ResNet18 classifier that were labeled as OOD,
adversarial, or DV in Figure 3. These images show that, as
predicted, the adversarial detector makes up for error in the
OOD detector, removing some OOD data at this step.

V. CONCLUSION

In this paper, we propose a refinement to the validity
property of contrastive examples based on classifier agree-
ment with the data distribution, namely distributional va-
lidity, which is important to accurately provide recourse to
those affected by automated decision systems. We evaluate
contrastive generation methods using this property and find
that the best generation method can vary on the architecture
of the employed classifier. This work introduces theoretical
results in image space, a highly structured and correlated
data space, but could be applied to other domains, including
tabular datasets, in order to better provide recourse automated

system users. Finally, in this study we conduct our experiments
using automated methods. Follow up experiments using user
studies would allow us to understand how other interpretability
metrics are correlated with distributional validity.

ACKNOWLEDGMENT

This research has been sponsored by the National Sci-
ence Foundation through grant IIS-1652846. This work was
completed utilizing the Holland Computing Center of the
University of Nebraska, which receives support from the
UNL Office of Research and Economic Development and the
Nebraska Research Initiative.

REFERENCES

[1] M. Bakator and D. Radosav, “Deep learning and medical diagnosis: A
review of literature,” Multimodal Technologies and Interaction, vol. 2,
no. 3, p. 47, 2018.

[2] K. Freeman, “Algorithmic injustice: How the wisconsin supreme court
failed to protect due process rights in state v. loomis,” North Carolina
Journal of Law & Technology, vol. 18, no. 5, p. 75, 2016.

[3] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey
on explainable artificial intelligence (XAI),” IEEE access, vol. 6, pp.
52 138–52 160, 2018.

[4] A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera, “A survey of
algorithmic recourse: contrastive explanations and consequential recom-
mendations,” ACM Computing Surveys, vol. 55, no. 5, pp. 1–29, 2022.

[5] S. Verma, V. Boonsanong, M. Hoang, K. E. Hines, J. P. Dickerson,
and C. Shah, “Counterfactual explanations and algorithmic recourses
for machine learning: A review,” arXiv:2010.10596, 2022.

[6] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach,
“FACE: Feasible and actionable counterfactual explanations,” in Pro-
ceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020,
pp. 344–350.

[7] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[8] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency,
2020, pp. 607–617.

[9] S. Joshi, O. Koyejo, B. Kim, and J. Ghosh, “xGEMs: Generating
examplars to explain black-box models,” arXiv:1806.08867, 2018.

[10] A. Feghahati, C. R. Shelton, M. J. Pazzani, and K. Tang, “CDeepEx:
Contrastive Deep Explanations,” in ECAI 2020, 2020, pp. 1143–1151.

[11] A. Van Looveren and J. Klaise, “Interpretable Counterfactual Explana-
tions Guided by Prototypes,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, vol. 12976 LNAI,
2021, pp. 650–665.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2014.

[13] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[14] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 39–57.

[15] A. Joshi, A. Mukherjee, S. Sarkar, and C. Hegde, “Semantic Adver-
sarial Attacks: Parametric Transformations That Fool Deep Classifiers,”
Proceedings of the IEEE International Conference on Computer Vision,
vol. 2019-Octob, pp. 4772–4782, apr 2019.

[16] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[17] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Syn-
thesizing the preferred inputs for neurons in neural networks via deep
generator networks,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
Eds., vol. 29. Curran Associates, Inc., 2016.

[18] T. Laugel, M.-J. Lesot, C. Marsala, and M. Detyniecki, “Issues with
post-hoc counterfactual explanations: a discussion,” in ICML Workshop
on Human in the Loop Learning (HILL 2019), 2019.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[20] Z. Zhang, K. Qiao, L. Jiang, L. Wang, J. Chen, and B. Yan, “AdvJND:
Generating Adversarial Examples with Just Noticeable Difference,”
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12487
LNCS, pp. 463–478, feb 2020.

[21] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples in
the physical world,” 2016.

[22] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!” in
Advances in Neural Information Processing Systems, vol. 32, 2019.

[23] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” 2017.

[24] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck,
D. Song, M. E. Houle, and J. Bailey, “Characterizing adversarial
subspaces using local intrinsic dimensionality,” in 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

[25] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[26] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” arXiv preprint
arXiv:1706.02690, 2017.

[27] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo, J. Dillon,
and B. Lakshminarayanan, “Likelihood ratios for out-of-distribution
detection,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[28] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2323, 1998.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

